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Abstract: The start of LHC has motivated an effort to determine the relative probability

of the different regions of the MSSM parameter space, taking into account the present, the-

oretical and experimental, wisdom about the model. Since the present experimental data

are not powerful enough to select a small region of the MSSM parameter space, the choice

of a judicious prior probability for the parameters becomes most relevant. Previous stud-

ies have proposed theoretical priors that incorporate some (conventional) measure of the

fine-tuning, to penalize unnatural possibilities. However, we show that such penalization

arises from the Bayesian analysis itself (with no ad hoc assumptions), upon the marginal-

ization of the µ−parameter. Furthermore the resulting effective prior contains precisely

the Barbieri-Giudice measure, which is very satisfactory. On the other hand we carry on a

rigorous treatment of the Yukawa couplings, showing in particular that the usual practice

of taking the Yukawas “as required”, approximately corresponds to taking logarithmically

flat priors in the Yukawa couplings. Finally, we use an efficient set of variables to scan the

MSSM parameter space, trading in particular B by tan β, giving the effective prior in the

new parameters. Beside the numerical results, we give accurate analytic expressions for

the effective priors in all cases. Whatever experimental information one may use in the

future, it is to be weighted by the Bayesian factors worked out here.
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1 Introduction

The imminent start of LHC has motivated an interesting effort (see refs. [1–8]) to antic-

ipate which kind of supersymmetric model is more likely to be there, or, in more precise

words, which region of the parameter space of the minimal supersymmetric standard model

(MSSM) is more probable, taking into account the present (theoretical and experimental)

wisdom about the model. This wisdom includes theoretical constraints (and perhaps prej-

udices) and experimental constraints, such as electroweak precision tests. The idea is to

use this information to determine the relative probability of the different regions of the

MSSM parameter space, thus the frequent expression “LHC forecasts”. The appropriate

framework to evaluate this probability is the Bayesian approach, which allows to separate

in a neat way the objective and subjective pieces of information.

In the Bayesian analysis one tries to make inferences about the relative probabil-

ity of different “states of nature” (corresponding to different values of the parameters

defining the model, say pi) upon the observation of different data which are determined1

completely by pi.

The probability density of a particular point {p0
i } in the parameter space, given a

certain set of data, is the so-called posterior probability density function (pdf), p(p0
i |data),

which is given by the fundamental Bayesian relation (for a review see ref. [9])

p(p0
i |data) = p(data|p0

i ) p(p0
i )

1

p(data)
. (1.1)

Here p(data|p0
i ) is the likelihood (sometimes denoted by L), i.e. the probability density of

measuring the given data for the chosen point in the parameter space. e.g. for observables

measured within a gaussian uncertainty, L is proportional to e−
1
2
χ2

, where χ2 is the con-

ventional chi-squared. p(p0
i ) is the prior, i.e. the “theoretical” probability density that we

1Normally this determination takes the form of a probability distribution since the theoretical compu-

tations and the experimental data are affected by different kinds of errors and uncertainties.
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assign a priory to the point in the parameter space. Finally, p(data) is a normalization

factor which plays no role unless one wishes to compare different classes of models, so for

the moment it can be dropped from the previous formula.

One can say that in eq. (1.1) the first factor (the likelihood) is objective, while the

second (the prior) is subjective, since it contains our prejudices about which regions of the

parameter space are more “natural” or “expectable”. It is desirable that the results of the

analysis are as independent as possible of the chosen prior. This happens if the data are

powerful enough to select a very small region of the parameter space, so that eq. (1.1) is

dominated by the likelihood, i.e. essentially the pdf is non-zero just in the narrow region

of non-vanishing p(data|pi). However, in many instances this is not the case, as it happens

for the MSSM.

The somewhat subjective character of the prior, p(p0
i ), has often motivated to ignore

its presence, identifying in practice p(p0
i |data) with p(data|p0

i ). However, it must be noticed

that this procedure implicitly implies a choice for the prior, namely a completely flat prior

in the parameters. This is not necessarily the most reasonable or “free of prejudices”

attitude. Note for example that using p2
i as initial parameters instead of pi the previous

flat prior becomes non-flat. So one needs some theoretical basis to establish, at least, the

parameters whose prior can be reasonably taken as flat.

If we are interested in the most probable value of one (or several) of the initial pa-

rameters, say pi, i = 1, . . . , N1, but not in the others, pi, i = N1 + 1, . . . , N , we have to

marginalize the latter, i.e. integrate in the parameter space:

p(pi, i = 1, . . . , N1|data) =

∫

dpN1+1, . . . , dpN p(pi, i = 1, . . . , N |data) . (1.2)

This procedure is very useful and common to make predictions about the values of partic-

ularly interesting parameters. It must be noticed that, in order to perform the marginali-

sation, we need an input for the prior functions and for the range of allowed values of the

parameters, which determines the range of the definite integration (1.2). A choice for these

ingredients is therefore inescapable in trying to make LHC forecasts.

Let us now particularize these general statements to the MSSM (for a review see [10]).

Beside the Standard Model (SM) –like parameters (to be discussed below), the MSSM

contains a great number of parameters associated with the unknown process of supersym-

metry (SUSY) breaking, the so-called soft SUSY-breaking terms. Assuming universality

of these terms at a given high scale (namely the scale at which the SUSY breaking is

transmitted to the observable sector), these parameters are reduced to four: the universal

scalar mass, m, the universal gaugino mass, M , the universal trilinear scalar coupling, A,

and the bilinear scalar coupling, B. The universality assumption is in part justified by

the need of keeping the FCNC processes under control and it does come out naturally

in several schemes of SUSY breaking mediation, e.g. minimal SUGRA or gauge-mediated

models (for a review see [11] and [12] respectively). Beside these four parameters one has to

include the µ-parameter (i.e. the Higgs mass term in the superpotential) as an additional

independent parameter, presumably with a magnitude similar to the soft breaking terms,

as it is demanded by a successful electroweak breaking (see below). The notation used here

is consistent with refs. [10, 13].

– 2 –
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The SM-like parameters of the MSSM include the SU(3) × SU(2) × U(1)Y gauge cou-

plings, g3, g, g′, and the Yukawa couplings, which in turn determine the fermion masses

and mixing angles. An important difference from the SM is that the MSSM contains two

Higgs doublets, H1,H2, with expectation values vi = 〈H0
i 〉 determined by the parameters

of the model upon minimization of the scalar potential, V (H1,H2). They have to fulfill

2(v2
1 +v2

2) = v2 = (246 GeV)2. The down-type-quark masses go like md ∼ ydv1 = ydv cos β,

where tan β ≡ v2/v1. Similarly for the up-type-quarks mu ∼ yuv2 = yuv sin β, and for the

charged leptons, me ∼ yev1 = yev cos β. Hence the values of the Yukawa couplings which

give the observed fermion masses depend on the derived parameter tan β, a fact that will

be relevant later in our discussion.

In section 2 we address some basic aspects of the Bayesian approach for the MSSM,

showing in particular that a penalization of the fine-tuning arises from the Bayesian analy-

sis itself (with no ad hoc assumptions as in previous analyses), upon the marginalization of

the µ−parameter (subsection 2.1). We also present a rigorous treatment of the Yukawa cou-

plings, showing that the usual practice of taking the Yukawas “as required”, approximately

corresponds to taking logarithmically flat priors in the Yukawa couplings (subsection 2.2).

In section 3 we use an efficient set of variables to scan the MSSM parameter space, trad-

ing in particular B by tan β, giving the effective prior in the new parameters. Finally, in

section 4 we summarize our results and conclusions.

2 Some basic aspects

2.1 Connection between the Bayesian approach and the fine-tuning measure

It is common lore that the parameters of the MSSM, {m,M,A,B, µ}, should not be far

from the electroweak scale in order to avoid unnatural fine-tunings to obtain the correct

scale of the electroweak breaking. This can be easily appreciated from the minimization of

the tree-level form of the scalar potential, V (H1,H2), which gives the expectation values

of the Higgses, and thus the value of M2
Z = 1

2 (g2 + g′2)(v2
1 + v2

2); namely

M2
Z = 2

m2
H1

− m2
H2

tan2 β

tan2 β − 1
− 2µ2 . (2.1)

Unless the µ−term and the soft masses mHi
(which upon the renormalization running

depend also on the other soft terms) are close to the electroweak scale, a funny cancel-

lation among the various terms in the right hand side of (2.1) is necessary to get the

experimental MZ .

A conventional measure of the degree of fine-tuning is given by the Barbieri-Giudice

fine-tuning parameters [14]:

ci =

∣

∣

∣

∣

∂ ln M2
Z

∂ ln pi

∣

∣

∣

∣

, (2.2)

which weigh up the sensitivity of MZ with respect to the parameters of the model, pi. The

global measure of the fine-tuning is taken as c ≡ max{ci} or c ≡
√

∑

c2
i [14–17].

– 3 –
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Previous studies have attempted to incorporate this fine-tuning measure to the Bayesian

approach through the prior p(pi). In particular, in refs. [2, 18] a prior p(pi) ∝ 1/c was

proposed.2 In principle this is not unreasonable since 1/c approximately indicates the

probability of a cancellation among the various terms contributing to M2
Z to give a result

<∼ (M exp
Z )2. This can be intuitively seen as follows. Expanding M2

Z(pi) around a point

in parameter space that gives the desired cancellation, say P0 ≡ {p0
i }, up to the linear

term in the parameters, one finds that only a small neighborhood δP ∼ P0/c around this

point gives a value of M2
Z smaller or equal to the experimental value [15]. Hence, if one

assumes that P could reasonably have taken any value of the order of magnitude of P0,

then only for a small fraction ∼ 1/c of this region one gets M2
Z

<∼ (M exp
Z )2, thus the rough

probabilistic meaning of c.

However, though reasonable, the above-mentioned proposals for priors are rather ar-

bitrary, as the very measure of the fine-tuning is. On the other hand, since the naturalness

arguments are deep down statistical arguments, one might expect that an effective pe-

nalization of fine-tunings should arise from the Bayesian analysis itself, with no need of

introducing “naturalness priors” ad hoc.3 This is in fact the case, as we are about to see.

Let us consider MZ as an experimental data, on a similar foot to the rest of physical

observables. Then the total likelihood reads

p(data|s,m,M,A,B, µ) = NZ e−
1
2
χ2

Z Lrest , (2.3)

where s represents the SM-like parameters, Lrest is the likelihood associated to all the

physical observables, except MZ , and

χ2
Z =

(

MZ − M exp
Z

σZ

)2

, (2.4)

where σZ ≪ M exp
Z is the experimental uncertainty in the Z mass; finally NZ = 1/

√
2πσZ

is a normalization constant. Let us now use this sharp dependence on MZ to marginalize

the pdf in the µ−parameter, performing a change of variable µ → MZ :

p(s,m,M,A,B| data) =

∫

dµ p(s,m,M,A,B, µ|data)

= NZ

∫

dMZ

[

dµ

dMZ

]

e−χ2
Z Lrest p(s,m,M,A,B, µ)

≃ Lrest

[

dµ

dMZ

]

µ0

p(s,m,M,A,B, µ0) . (2.5)

where µ0 is the value of µ that reproduces the experimental value of MZ for the given

values of {s,m,M,A,B}. In the last line of (2.5) we have approximated NZ e−
1
2
χ2

Z ≃
δ(MZ −M exp

Z ). Essentially the same result is obtained by performing the µ−integration in

the stationary point approximation. Now, comparing (2.5) to the definition of fine-tuning

parameters (2.2), we can write

p(s,m,M,A,B| data) = 2 Lrest
µ0

MZ

1

cµ
p(s,m,M,A,B, µ0) . (2.6)

2Another prior designed to catch the naturalness criterion has been proposed in ref. [4].
3This has also been noted and taken into account in [19]
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Several comments are in order here. First, the presence of the fine-tuning parameter, 1/cµ,

penalizes the regions of the parameter space with large fine-tuning, as desired. Actually

eq. (2.6) is very similar to multiply by hand the initial prior in the parameters by a factor

1/c, as in ref. [2]. The difference is that here the factor 1/cµ has not been put by hand:

it comes out from the marginalization in µ. Moreover the prior p(s,m,M,A,B, µ0) is

still undefined. If one takes it as flat, then one gets the same as in ref. [2], but with

one factor µ in the numerator (still the regions of large fine-tuning are penalized since

cµ goes parametrically as ∼ µ2). If one takes logarithmically flat priors, i.e. p(µ) ∝ 1/µ,

then eq. (2.6) would formally coincide with the procedure of multiplying the theoretical

prior p(s,m,M,A,B) by a factor 1/c. This is reasonable: the usual naturalness criteria

implicitly assume that for a given value of one parameter, say µ = µ0, the prior probability

is distributed around µ0 [15, 17] with a width ∼ µ0 [see the brief discussion in the paragraph

after eq. (2.2)]. This is equivalent to assume that the value µ = µ0 has a prior probability

∝ 1/µ0. Actually this is the reason why, according to usual fine-tuning arguments, large soft

parameters are more unlikely than small ones: for the former the region of the parameter

space that produces the observed electroweak scale is much narrower than for the latter, not

in absolute value, but compared to the size of the soft parameters in each case. Assuming

flat priors there would be no reason to prefer soft parameters of the electroweak size instead

of e.g. order MGUT. The fact that even for flat priors we still get a penalty factor µ/cµ

comes from the assumption of a prior flat in µ instead of µ2, which is the quantity that

appears in the cancellation [see e.g. eq. (2.1)].

We find very satisfactory that the usual parameter to quantify the degree of fine-tuning

emerges from the Bayesian approach “spontaneously”, not upon subjective assumptions,

especially taking into account that there has been much discussion in the literature about

its significance and suitability, see e.g. refs. [15–18, 20]. Actually, one gets simply cµ instead

c, as defined in eq. (2.2). Of course there is nothing special with the µ−parameter, except

the fact that we have chosen to marginalize it using the experimental information about

MZ , which is the usual practice. Had we chosen to marginalize another parameter, say M ,

we would have got cM , but of course at the end the results would be the same.

A convenient way to view eq. (2.6) is to imagine that we start with an MSSM parameter

space {s,m,M,A,B} where µ has been eliminated using the experimental value of MZ .

Then the pdf appears as the likelihood associated to the experimental information (except

M exp
Z ) times an effective prior

peff(s,m,M,A,B) = 2
µ0

MZ

p(µ0)

cµ
p(s,m,M,A,B) , (2.7)

where for simplicity we have assumed that the prior in µ factorizes from the rest. This

means that the initial prior gets multiplied by a factor 2 µ0

MZ

p(µ0)
cµ

that carries the fine-tuning

penalty. In figure 1 we have plotted this factor in representative slices of the {s,m,M,A,B}
parameter space (using the two basic choices p(µ) ∝ const., p(µ) ∝ 1/µ) for some illus-

trative and physically relevant cases. In all of them large soft parameters get penalized

(except partially for focus-point regions [21, 22]). There are no ad hoc assumptions for this

result, it just comes out from the value of M exp
Z and the marginalization of µ.

– 5 –
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Figure 1. Values of the factor µ p(µ)/(MZcµ) (in logarithmic units and up to a convenient

proportionality constant) in the {m, M} plane for µ > 0, A = 0, B = 0 (upper plots), and for

µ < 0, A = 0 and the minimal SUGRA relation B = A − m (lower plots), using the two basic

initial priors, p(µ) ∝ const. (left plots), p(µ) ∝ 1/µ (right plots). The plotted factor appears in the

effective prior given in eq. (2.7).

For practical calculations it is useful to have an approximate expression for cµ. From

the tree-level condition (2.1) we see that cµ ∼ 2µ2/M2
Z . Nevertheless, using the approxi-

mate analytic formulas discussed in section 3, it is possible to write a much more refined

expression for cµ, which we postpone to that section.

– 6 –
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2.2 Nuisance variables and the role of the Yukawa couplings

It is common in statistical problems that not all the parameters that define the system are

of interest. In the problem at hand we are interested in determining the probability regions

for the MSSM parameters that describe the new physics, i.e. {m,M,A,B, µ}, but not (or

not at the same level) in the SM-like parameters, denoted by {s}. However, the nuisance

parameters {s} play an important role in extracting experimental consequences from the

MSSM. The usual technique to eliminate nuisance parameters is simply marginalizing them,

i.e. integrating the pdf (2.6) in the {s} variables (for a review see ref. [23]). When the value

of a nuisance parameter is in one-to-one correspondence to a high-quality experimental

piece of information (included in Lrest), this integration simply selects the “experimental”

value of the nuisance parameter, which thus becomes (basically) a constant with no further

statistical significance in the analysis. In particular, the prior on such nuisance parameter

becomes irrelevant. In the MSSM, nuisance parameters of this class are the gauge couplings,

{g3, g, g′},4 which thus can be extracted from the analysis.

In the pure SM a similar argument can be used to eliminate the Yukawa couplings,

since they are in one-to-one correspondence to the quark and lepton masses. However, as

discussed in section 1, in the MSSM these masses depend also on the value of tan β ≡ v2/v1,

which is a derived quantity that takes different values at different points of the MSSM pa-

rameter space. This means that two viable MSSM models (with the same fermion masses)

will have in general very different values of the Yukawa couplings, and thus the theoretical

prior, p(y), will play a relevant and non-ignorable role in their relative probability. Any

Bayesian analysis of the MSSM amounts to an explicit or implicit assumption about the

prior in the Yukawa couplings.

In order to make these points more explicit, let us temporarily simplify the discussion

approximating the experimental likelihood related to the fermion masses as

Lfermion masses = δ(mt − mexp
t ) δ(mb − mexp

b ) . . . . (2.8)

(which is a fair approximation). This is a factor of the global likelihood, Lrest. Likewise,

let us approximate the theoretical values of the fermion masses as

mt =
1√
2
ylow

t vsβ, mb =
1√
2
ylow

b vcβ , etc. (2.9)

where sβ ≡ sin β, cβ ≡ cos β and ylow
i are the low-energy Yukawa couplings. As it is well-

known these expressions correspond to the running masses. The physical (pole) masses

include a radiative correction that we have ignored here, but not in our full analysis.

A further simplification is to assume ylow
i = Riyi, where yi are the high-energy Yukawa

couplings (and thus the input parameters) and the renormalization-group factor Ri does

4Strictly speaking, the initial theoretical inputs are the gauge couplings at high energy, which are related

to the experimental (low-energy) ones by the renormalization-group running. This running depends on the

other MSSM parameters through the position of thresholds associated with different particles. Hence, two

viable MSSM models have slightly different values of the gauge couplings at high energy, and thus the

theoretical prior on the couplings would play an (almost insignificant) role in the statistical comparison of

the two models.

– 7 –
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not depend on yi itself (this is not a good approximation for the top Yukawa coupling,

but we will assume it momentarily for the sake of clarity). Now, the marginalization in

the Yukawa couplings can be readily done, integrating the pdf given by eq. (2.6) in the yi

variables. Writing just the relevant terms we get

∫

[dyt dyb · · · ] p(y,m,M,A,B| data) =

∫

[dyt dyb · · · ] p(y)δ(mt − mexp
t ) δ(mb − mexp

b ) · · ·

∼ p(y)

∣

∣

∣

∣

dyt

dmt

∣

∣

∣

∣

∣

∣

∣

∣

dyb

dmb

∣

∣

∣

∣

· · ·= p(y) s−1
β c−1

β · · · (2.10)

where p(y) denotes the prior in the Yukawa couplings (which we assume that factorizes

from the other priors). Eq. (2.10) represents the footprint of the Yukawa couplings in the

pdf. Note that the factors s−1
β c−1

β · · · arise from the change of variables yi → mi, even if

the likelihood is not approximated by deltas. There are as many such factors as quarks

and leptons. This amounts to a dramatic modulation of the relative probability of MSSM

regions with different tan β if one chooses a flat prior, p(y) = const. If, instead, one takes

logarithmically flat priors, i.e. p(yi) ∝ 1/yi, then the s−1
β c−1

β · · · factors get cancelled, so

that the elimination of the Yukawa couplings does not leave a footprint in the probability

density of the (non-nuisance) MSSM parameter space, {m,M,A,B, µ}.
In previous Bayesian analyses of the MSSM the role of the Yukawa couplings was not

considered to this extent. Essentially, their values were taken as needed to reproduce the

experimental fermion masses, within uncertainties. As we have seen, this practice approx-

imately corresponds to assuming logarithmically flat priors in the Yukawa couplings.5

The above discussion is however oversimplified. As already mentioned, the marginal-

ization in the top Yukawa coupling (and sometimes the bottom one) produces extra factors

due to the dependence of Rt on yt. Actually, since one is marginalizing simultaneously in the

Yukawa couplings and the µ−parameter one has to evaluate the full Jacobian of the trans-

formation {µ, yt} → {MZ ,mt}, which introduces additional contributions. Furthermore,

the picture gets more complicated due to the fact that, for a given choice of {m,M,A,B},
there may be several values of µ leading to the correct value of MZ with different values of

tan β and thus of the Yukawa couplings. This means that in the marginalization one has

to sum over all these possibilities. This is technically annoying and reduces the clarity of

the approach. These drawbacks can be eliminated by trading in the statistical analysis the

initial B−parameter by the derived tan β parameter, as we discuss in the next section.

Let us finally mention that in the analysis of ref. [2] the fermion masses themselves,

rather than the Yukawa couplings, were taken as SM-like variables. The advantage of such

procedure is that these nuisance variables are in obvious one-to-one correspondence to the

experimental data. Then the priors on the masses become almost irrelevant, and they can

be integrated out, almost without leaving any footprint. However, this has two problems.

First, the fermion masses are obviously derived quantities and should not be taken as initial

5Actually, for independent reasons, we find the logarithmically flat prior for Yukawa couplings a most

sensible choice. Certainly there is no convincing origin for the experimental pattern of fermion masses, and

thus of Yukawa couplings. However it is a fact that these come in very assorted orders of magnitude (from

O(10−6) for the electron to O(1) for the top), suggesting that the underlying mechanism may produce

Yukawa couplings of different orders with similar efficiency.

– 8 –
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input variables, even if this makes life easier. Second, such procedure introduces completely

artificial factors, as it will become clear at the end of the next section.

3 Efficient variables to scan the MSSM parameter space

In MSSM analyses it is normally very advantageous, both for theoretical and phenomeno-

logical reasons, to trade the initial B−parameter by the derived tan β parameter. On the

phenomenological side, tan β is a parameter that appears explicitly in the predictions for

many physical processes, such as cross sections, branching ratios, etc. (this is unlike B,

that enters only in a very indirect way). Thus it is convenient to get the probability density

of the MSSM parameter space as a function of tan β. On the theoretical side, for a given

viable choice of {m,M,A, tan β}, there are exactly two values of µ (with opposite sign and

the same absolute value at low energy) leading to the correct value of MZ . Thus working

in one of the two (positive and negative) branches of µ, each point in the {m,M,A, tan β}
space corresponds exactly to one model, whereas a point in the {m,M,A,B} space may

correspond to several models, introducing a conceptual and technical complication in the

analysis, as mentioned in the previous section.

Changing variables B → tan β amounts to a factor dB/d tan β in the pdf. On the

other hand, we have seen in section 2 that it is convenient to trade µ and yt by MZ and

mt, as this makes the marginalization of these variables easier and more transparent. Thus

we should compute the whole Jacobian, J , of the transformation

{µ, yt, B} → {MZ ,mt, t}, t ≡ tan β , (3.1)

so that, in the new variables, the pdf reads

p(gi,mt,m,M,A, tan β| data) = Lrest J |µ=µ0
p(gi, yt,m,M,A,B, µ = µ0) . (3.2)

Here we have made explicit the dependence on the gauge couplings, and the top Yukawa

coupling and mass, but not on the other fermions’. In this equation we have already

marginalized MZ using the associated likelihood ∼ δ(MZ − M exp
Z ) (recall that µ0 is the

value of µ that reproduces the experimental MZ .) The combination

peff(gi,mt,m,M,A, tan β) ≡ J |µ=µ0
p(gi, yt,m,M,A,B, µ = µ0) (3.3)

can be viewed as the effective prior in the new, more convenient, variables to scan the

MSSM. Note that, as discussed in subsection 2.2, the gauge couplings are fairly irrelevant

for the statistical analysis, so we will drop them in what follows. In order to work out J we

need the dependence of the old variables on the new ones, which can be derived from the

minimization equations of the scalar potential, V (H1,H2), and from the expression of the

top pole mass. For the numerical analysis we have used the SOFTSUSY code [13] which

implements the full one-loop contributions and leading two-loop terms to the tadpoles

for the electroweak symmetry breaking conditions with parameters running at two-loops.

This essentially corresponds to the next-to-leading log approximation. However, in order to

highlight the most relevant facts it is useful to write down the expressions arising from the
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minimization of the tree-level potential with parameters running at one-loop (i.e. essentially

the leading log approximation):

µ2
low =

m2
H1

− m2
H2

t2

t2 − 1
− M2

Z

2
(3.4)

Blow =
s2β

2µlow
(m2

H1
+ m2

H2
+ 2µ2

low) (3.5)

ylow =
mt

v sβ
. (3.6)

Here the “low” subscript indicates that the quantity is evaluated at low scale (more pre-

cisely, at a representative supersymmetric mass, such as the geometric average of the stop

masses). The soft masses m2
Hi

are also understood at low scale. For notational simplicity,

we have dropped the subscript t from the Yukawa coupling. We are not making explicit

the role of the bottom Yukawa coupling, which is treated in a similar foot to the top one.

Note that all these low-energy quantities contain an implicit dependence on the top Yukawa

coupling through the corresponding renormalization-group equations (RGEs). The effect

of the one-loop corrections on the effective potential to the previous expressions is incor-

porated by correcting the soft masses m2
Hi

with one-loop tadpole effects along the lines

of ref. [24]. Similarly the pole top mass is given by the running top mass, appearing in

eq. (3.6), plus a radiative correction ∆radmt. Eqs. (3.4), (3.6), even when corrected with

the mentioned radiative effects, have the structure

µ = f(MZ , y, t), y = g(MZ ,mt, t), B = h(µ, y, t) , (3.7)

where we only make explicit the dependence on the variables involved in the change of

variables (3.1). Note that y depends on MZ since v ∝ MZ . Notice also that, unlike

eqs. (3.4–3.6), eqs. (3.7) are defined in terms of the the high-energy parameters.

From eqs. (3.7) it is straightforward to evaluate the Jacobian J of the transforma-

tion (3.1), and thus the effective prior (3.3). J gets simply

J =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂µ
∂MZ

∂µ
∂t

∂µ
∂mt

∂B
∂MZ

∂B
∂t

∂B
∂mt

∂y
∂MZ

∂y
∂t

∂y
∂mt

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
∂f

∂MZ

∂g

∂mt

∂h

∂t
, (3.8)

where the factor ∂f/∂MZ carries essentially the fine-tuning penalization discussed in sub-

section 2.1.

We can give an analytical and quite accurate expression of J by using the approximate

equations (3.4)–(3.6), and expressing the low-energy values of µ,B, y in terms of the high-

energy ones through the integrated 1-loop RGEs. Schematically,

µlow = Rµ(y)µ, Blow = B + ∆RGB(y) , (3.9)

where Rµ(y),∆RGB(y) are definite functions of y (and other parameters, but not µ and

B, see e.g. ref. [10]). Similarly,

ylow ≃ yE(Qlow)

1 + 6yF (Qlow)
, (3.10)
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where Q is the renormalization scale, F =
∫ Qlow

Qhigh
E ln Q, and E(Q) is a definite function

that depends just on the gauge couplings [25]. Plugging (3.9) and (3.10) into eqs. (3.4)–

(3.6) we get explicit expressions for the f, g, h functions. The relevant derivatives, to be

plugged in (3.8), read

∂f

∂MZ
= −MZ

µ

1

2R2
µ

= − MZ

µlow

1

2Rµ
(3.11)

∂h

∂t
= Blow

1 − t2

t(1 + t2)
(3.12)

∂g

∂mt
=

E

v sβ

(

y

ylow

)2

. (3.13)

Let us comment briefly on these expressions. As mentioned above, eq. (3.11) is essentially

the fine-tuning factor 2µ/(MZcµ) obtained in subsection 2.1 [eq. (2.6)]. It penalizes large

scales for µ. Eq. (3.12) counts the volume conversion from dB to dt and it is proportional to

a soft mass just for dimensional reasons. Note that this factor penalizes low scales. This is

easy to understand looking at eq. (3.5): for a given interval in tan β, the larger the values of

the soft masses and µ, the larger the corresponding interval in B is. So larger B is favoured.

Note, however, that the size of the interval of B relative to the value of B itself (which is

statistically meaningful) is essentially constant. Indeed, the B-factor in eq. (3.12) will be

cancelled in the pdf if one uses logarithmic flat priors for the soft terms, p(B) ∝ 1/B. This

reasoning is similar to that after eq. (2.6). Finally, eq. (3.13) corresponds to eq. (2.10) of

our preliminar discussion. In particular, the 1/sβ factor corresponds to the same factor

in (2.10).

The Jacobian of the transformation (3.1) is given by the product of the three factors

of eqs. (3.11)–(3.13),

J =
1

4
(g2 + g′2)1/2

[

E

R2
µ

]

Blow

µ

t2 − 1

t(1 + t2)

(

y

ylow

)2

s−1
β . (3.14)

In the previous derivation we have considered just the top Yukawa coupling in the

change of variables (3.1). Once the others fermions are taken into account, the Jacobian

gets a s−1
β factor for each u−type quark and a c−1

β factor for each d−type quark and

charged lepton, as discussed in subsection 2.2. Now, recall that the effective prior in the

new variables is the product of J by the initial prior, as expressed in eqs. (3.2), (3.3); so

taking a logarithmically flat prior for the Yukawa couplings (i.e. p(yi) ∝ y−1
i ) the s−1

β , c−1
β

factors get cancelled in the effective prior and the pdf. For the top Yukawa coupling (and

sometimes for the bottom one) this cancellation still leaves a residual dependence on tan β

since

(

y

ylow

)2

s−1
β × 1

y
∝ y

ylow
, which through (3.10) depends on y itself and thus on tan β.

Therefore, the effective prior defined by eq. (3.3) takes the approximate form

peff(mt,m,M,A, tan β) ∝
[

E

R2
µ

]

y

ylow

t2 − 1

t(1 + t2)

Blow

µ0
p(m,M,A,B, µ = µ0) . (3.15)
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The most basic priors for the initial variables are the flat and the logarithmic ones, i.e.

p(m,M,A,B, µ) = const. , p(m,M,A,B, µ) ∼ 1

mMABµ
. (3.16)

Some comments are in order here. First, the normalization factors in (3.16) are determined

by the integrated probability and thus depend on the bounds one establishes for the pa-

rameters. Since we are discussing here relative probabilities in the parameter space, they

are not relevant at this stage, but they become more important when some parameters

are marginalized. Second, as argued in subsection 2.1, the logarithmic prior is physically

sensible and is the one that can catch the intuition that fine-tunings are statistically un-

likely. Actually, when plugged in (3.15), the logarithmic prior gives rise to the fine-tuning

penalization 1/µ2 ∼ 1/cµ. However, the simple logarithmic prior of eq. (3.15) is clearly

too simple, since it cannot be normalized due to low-energy and high-energy divergences.

These are easily cured by taking reasonable upper and lower bounds on the parameters,

e.g. [10 GeV, MX ]. In fact, this choice can be refined. From the 1-loop RGE of the initial

parameters, it is clear that very small values for m,A,B are not radiatively stable, due

to sizeable contributions proportional to the gaugino mass M . Therefore, it is not very

sensible to assume that values of these parameters smaller than say O(10−1M) at precisely

MX can have a particular statistical meaning. Thus we can take flat priors at this region of

small values. On the other hand, the experimental lower bounds on the gluino, charginos

and neutralinos imply that M and µ cannot be smaller than O(100) GeV. In figure 2 we

show the effective prior defined in (3.3) and computed using eq. (3.8) [with the full one-loop

expressions of eqs. (3.4)–(3.6)] for the two priors discussed after eq. (3.16), i.e. flat and log-

arithmically flat. The plots show, up to a constant of proportionality, the effective priors

in the {m,M} plane (with constant tan β,A) for some representative cases.6 We have as-

sumed in the figures that the soft terms are initially given at the scale of gauge unification,

MX ∼ 1016 GeV, as essentially happens in scenarios of gravity-mediated SUSY breaking,

but of course our formulas are also applicable to e.g. gauge-mediated SUSY breaking sce-

narios. The penalization of large scales is clear for the logarithmically flat case, as expected

from our discussion. The fact that using a logarithmic prior penalizes large values of the

parameters could seem quite obvious. However, this is not so clear when one compares the

integrated probability that the the parameters are within different ranges of scales. For in-

stance, the logarithmic prior alone would give more probability to the [100 TeV,MX ] range

than to the [100 GeV, 100 TeV] one. However, the presence of the mentioned fine-tuning

factor, 1/µ2, in the effective prior still penalizes the high-energy regions.

Figure 3 is similar to figure 2, but showing now slices in the {M, tan β} plane (with the

condition m = M). The plots illustrate the tan β dependence of the effective prior, which

can be essentially extracted from the approximate expression (3.15). [Note that, besides

6The proportionality constant is simply the normalization constant of the initial prior, eqs. (3.16), times

the normalization constant of the Yukawa prior. However, these factors play no role in the exam of the

relative probabilities of the points in the parameter space. Obviously, the absolute values of the left plots

cannot be compared to those of the right plots, as they are affected by a different normalization constant.

We prefer not to include these normalization factors, as they depend on the upper limit assumed for the

soft terms, and do not shed any additional light on the relative probabilities inside the parameter space.
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Figure 2. Values of the effective prior, peff , in logarithmic units as defined in eq. (3.3) (up to a

normalization constant), in the {m, M} plane for A = 0 and tanβ = 3 (upper plots), tanβ = 10

(central plots), tanβ = 30 (lower plots). The left and right plots correspond respectively to the two

basic choices of priors (flat and logarithmically flat) discussed in eq. (3.16) and below. See text for

further details.
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Figure 3. The same as figure 2, but in the {M, tanβ} plane, for A = 0, m = M .

the explicit dependence, eq. (3.15) contains an implicit dependence on tan β through the

Rµ, Blow and y/ylow factors.] We can appreciate from the plots that the prior probability

decreases with tan β.

The effective prior computed and shown in the figures corresponds to the last two

factors of the pdf (3.2). The first factor, i.e. the likelihood, carries the experimental

information (fermion masses, electroweak precision tests, g-2 of the muon, dark matter

constraints, etc.). Whatever experimental information (and thus likelihood) we may use,

it will be always weighted by the same effective prior factor shown here.

In this section we have argued so far that the sensible initial choice of independent

parameters of the MSSM is {gi, yt,m,M,A,B, µ}, while for practical reasons it is most

convenient to work with the set {gi,mt,m,M,A, tan β,MZ} (and signµ). MZ is elimi-

nated from the analysis using its extremely sharp likelihood. The effective prior in the

new variables is then given by eqs. (3.3), (3.8), for which we gave explicit approximate

expressions in eqs. (3.14), (3.15).

It is interesting to wonder what would have been the result if one had insisted in

taking directly mt as an initial (nuisance) variable, so that the transformation (3.1) would

have just involved {µ,B} → {MZ , t}, as has been done e.g. in ref. [4]. As argued in

subsection 2.2, it is theoretically bizarre to take mt as a fundamental variable, instead of

yt. However, one may gain the bonus of almost no sensitivity to the prior in mt, since this

is essentially fixed by the experiment. This is true, but this procedure introduces extremely

counter-intuitive contributions to the Jacobian, as we will see briefly. The new 2-variable

Jacobian is given by

J2 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂µ
∂MZ

∣

∣

∣

t,mt

∂µ
∂t

∣

∣

∣

MZ ,mt

∂B
∂MZ

∣

∣

∣

t,mt

∂B
∂t

∣

∣

MZ ,mt

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (3.17)
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where the subscripts emphasize which variables have to be kept frozen in the partial deriva-

tions. Now, using the definitions (3.7), it is straightforward to obtain

J2 =
∂f

∂MZ

∂h

∂t
+

∂g

∂MZ

(

∂f

∂y

∂h

∂t
− ∂f

∂t

∂h

∂y

)

+
∂f

∂MZ

∂h

∂y

∂g

∂t
. (3.18)

It is amusing that this expression for the Jacobian is more complicated than in the 3-

variable case, eq. (3.8). This comes from the fact that the derivatives in (3.17) contain

contributions coming from the dependence of µ and B on y, which is in turn a function

of t and MZ , eq. (3.6). These contributions were cancelled inside the 3-variable Jacobian

thanks to the third row in the matrix of eq. (3.8), but they are not cancelled here and give

rise to the second and third terms in eq. (3.18). Of course, if one ignores that µ and B in

eqs. (3.4), (3.5) have an implicit dependence in the top Yukawa, as was done in ref. [4], these

contributions do not appear; but this is not a good approximation, as we are about to see.

Note that the first term in (3.18) is similar to the 3-variable Jacobian given by eq. (3.8),7

whose physical significance (including the information about fine-tuning) was discussed

after eq. (3.13). This term goes parametrically as B/µ. However the second term goes

parametrically as Bm2/µM2
Z , and thus is much more important for large soft terms, which

then become strongly favoured (contrary to the intuitive expectatives). Therefore there is

no reason to ignore such term. In consequence, the expressions used in ref. [4] are much

closer to using yt as a fundamental variable with logarithmically flat prior than to using mt.

Let us finish this section by using the approximate expressions discussed above to give,

as advanced at the end of subsection 2.1, an approximate expression for the fine-tuning

parameter cµ. Recall that this parameter was defined as

cµ =

∣

∣

∣

∣

∂ ln M2
Z

∂ ln µ

∣

∣

∣

∣

y,B

, (3.19)

where the subscript indicates that the partial derivative must be performed at y,B constant.

Using eqs. (3.7), cµ can be written as

cµ =
2µ

MZ

(

∂f

∂MZ

)−1
[

1 +
∂f

∂t

∂h

∂µ

(

∂h

∂t

)−1
]

, (3.20)

where the right hand side has to be understood in absolute value. As above, using (3.9)

and (3.10) we obtain explicit approximated expressions for the f, g, h functions. Then

eq. (3.20) reads

cµ = 4R2
µ

µ2

M2
Z

[

1 − t2(1 + t2)

(t2 − 1)3
m2

H1
− m2

H2

Blowµlow

(

Blow

µlow
− 4t2

1 + t2

)

]

. (3.21)

Note that the combination m2
H1

− m2
H2

can be easily written in terms of B,µ using

eqs. (3.4), (3.5).

7Thus the resemblance of the result of ref. [4] to our approximate expression (3.14), except for the RG

and s
−1
β factors.
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4 Conclusions

The start of LHC has motivated an effort to determine the relative probability of the

different regions of the MSSM parameter space, taking into account the present (theoret-

ical and experimental) wisdom about the model. These attempts are often called “LHC

forecasts” [1–4, 6–8]. The central equation to extract this valuable information is the

fundamental Bayesian relation

p(s,m,M,A,B, µ|data) ∝ L(s,m,M,A,B, µ) p(s,m,M,A,B, µ) , (4.1)

which gives this probability in terms of the usual experimental likelihood, L, and the prior

p(s,m,M,A,B, µ), i.e. the “theoretical” probability density assigned a priory to points in

the space spanned by the MSSM parameters {m,M,A,B, µ} and the SM-like ones (s).

Since the present experimental data are not powerful enough to select a small region of

the MSSM parameter space, the choice of a judicious prior becomes most relevant. Indeed,

ignoring this amounts to an implicit choice for the prior (which is not always sensible).

On the other hand, it is common lore that the parameters of the MSSM, {m,M,A,B, µ},
should not be far from the electroweak scale in order to avoid unnatural fine-tunings to

obtain the correct scale of the electroweak breaking. Previous studies have attempted to

incorporate this reasonable intuition to the Bayesian approach, by choosing a prior that

counted (more or less explicitly) a conventional measure of the fine-tuning, typically the

Barbieri-Giudice parameter, c, defined in eq. (2.2).

However, though reasonable, these kinds of proposals are rather arbitrary, as the very

measure of the fine-tuning is. On the other hand, since the naturalness arguments are deep

down statistical arguments, one might expect that an effective penalization of fine-tunings

should arise from the Bayesian analysis itself. One of the main results of this paper has

been to show that this is really so: using the fact that the likelihood associated to the

experimental MZ is essentially a Dirac delta, ∼ δ(MZ −M exp
Z ), one can easily marginalize

the µ-parameter (i.e. integrate the density of probability in this variable). Then one gets

an effective prior for the remaining parameters

peff(s,m,M,A,B) = 2
µ0

MZ

1

cµ
p(s,m,M,A,B, µ0) , (4.2)

which exhibits the fine-tuning penalization. (µ0 is the value of µ that reproduces the

experimental MZ for the given values of {s,m,M,A,B}.) Of course this effective prior has

to be combined with the experimental likelihood, except the part associated to the Z mass.

The initial prior, p(s,m,M,A,B, µ), can be taken as flat or (preferably) logarithmically

flat, as usual. We find very satisfactory that precisely the usual parameter to quantify

the degree of fine-tuning emerges in the Bayesian approach “spontaneously”, not upon

subjective assumptions, especially taking into account that there has been much discussion

in the literature about its significance and suitability. We have completed this analysis by

giving an explicit and quite accurate expression for cµ, see eq. (3.21).

Our second result concerns the treatment of the Yukawa couplings. In previous

Bayesian analyses the Yukawas were essentially taken as needed to reproduce the ex-

perimental fermion masses, within uncertainties. However, unlike the pure SM, in the
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MSSM the Yukawa couplings are not in one-to-one correspondence to the quark and lep-

ton masses: they depend also on the value of tan β, which is a derived quantity that takes

different values at different points of the MSSM parameter space. This means that two

viable MSSM models (with the same fermion masses) will have in general very different

values of the Yukawa couplings, and thus the theoretical prior, p(y), will play a relevant

and non-ignorable role in evaluating their relative probability. Any Bayesian analysis of

the MSSM amounts to an explicit or implicit assumption about the prior in the Yukawa

couplings. We have made explicit the dependence of the results on such prior and shown

that the easiest and usual practice of taking the Yukawas “as required”, approximately

corresponds to taking logarithmically flat priors in the Yukawa couplings, which on the

other hand is not an unreasonable choice at all.

Finally we have repeated this analysis, using a more efficient set of variables to scan the

MSSM parameter space. Besides trading µ by MZ and the Yukawa couplings (in particular

the top one) by the fermion masses, it is known that trading B by tan β is highly advanta-

geous. Following similar steps one can arrive to an effective prior in the new parameters:

peff(gi,mt,m,M,A, tan β) ≡ J |µ=µ0
p(gi, yt,m,M,A,B, µ = µ0) , (4.3)

where J is the Jacobian of the transformation

{µ, yt, B} → {MZ ,mt, t}, t ≡ tan β (4.4)

(MZ does not appear in the right hand side of (4.3) since it is marginalized as explained

above.) Note that still the initial choice of independent parameters is {yt,m,M,A,B, µ}
(on which the initial priors are defined). It is the change of variables plus the marginaliza-

tion of MZ what leads to the above effective prior. We have calculated J both numerically

and analytically (in an approximate but quite accurate fashion). The relevant formulas are

eqs. (3.8) and(3.14). The last expression is very handful and leads to the effective prior

given in eq. (3.15). Whatever experimental information (and thus likelihood) one may use,

it will be always weighted by the same effective prior factor calculated (and shown in plots

for illustrative cases) here.

We have also discussed the results in comparison with other approaches in the litera-

ture, arguing that the present one is conceptually more satisfactory.

Acknowledgments
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